Land Area Calculation: UTM Coordinates and NOS (Nearest Segment Offset) Methodology Guide

Point X Y
2
744523.2121
2031527.8810
3
744518.1044
2031549.6850
4
744517.3945
2031566.7380
5
744484.8212
2031556.6270
6
744484.8769
2031544.9390
1
744492.8768
2031516.2320

UTM coordinates are given as a zone number together with an easting-northing pair. Given two points (X1, Y1), (X2, Y2) in the same zone.

 

         Simply distance “over the Earth” between the two points is well approximated by the euclidean distance between the easting-northing coordinates using the following formula.

 

                                                                 
Land Area Calculation: UTM Coordinates and NOS

Now calculate the distance b/w stations using the above formula,

Distance Between Stations
\[ \begin{aligned} \text { Distance between } 1 \text { to } 2 \text { station } & =\sqrt{(744523.2121-744492.8768)^{2}+(2031527.8810-2031516.2320)^{2}} \\ & =32.49 \text { Meters } \end{aligned} \]
\[ \begin{aligned} \text { Distance between } 2 \text { to } 3 \text { station } & =\sqrt{(744523.2121-744518.1044)^{2}+(2031527.8810-2031549.6850)^{2}} \\ & =22.39 \text { Metres } \end{aligned} \]
\[ \begin{aligned} \text { Distance between } 3 \text { to } 4 \text { station } & =\sqrt{(744518.1044-744517.3945)^{2}+(2031549.6850-2031566.7380)^{2}} \\ & =17.06 \text { Metres } \end{aligned} \]
\[ \begin{aligned} \text { Distance between } 4 \text { to } 5 \text { station } & =\sqrt{(744517.3945-744484.8212)^{2}+(2031566.7380-2031556.6270)^{2}} \\ & =34.10 \text { Metres } \end{aligned} \]
\[ \begin{aligned} \text { Distance between } 5 \text { to } 6 \text { station } & =\sqrt{(744484.8212-744484.8769)^{2}+(2031556.6270-2031544.9390)^{2}} \\ & =11.68 \text { Metres } \end{aligned} \]
\[ \begin{aligned} \text { Distance between } 6 \text { to } 1 \text { station } & =\sqrt{(744484.8769-744492.8768)^{2}+(2031544.9390-2031516.2320)^{2}} \\ & =29.80 \text { Metres } \end{aligned} \]
Land Area Calculation UTM Coordinates and NOS

Using the triangulation principle, Divides the entire field into triangles.

Land Area Calculation UTM Coordinates and NOS

Now calculate the distance of diagonals 1 to 4, 1 to 5, and 2 to 4 Using the Euclidean formula.

Distance Between Stations
\[ \begin{aligned} \text { Distance between } 1 \text { to } 4 \text { station } & =\sqrt{(744517.3945-744492.8768)^{2}+(2031566.7380-2031516.2320)^{2}} \\ & =56.14 \text { Meters } \end{aligned} \]
\[ \begin{aligned} \text { Distance between } 1 \text { to } 5 \text { station } & =\sqrt{(744484.8212-744492.8768)^{2}+(2031556.6270-2031516.2320)^{2}} \\ & =41.19 \text { Metres } \end{aligned} \]
\[ \begin{aligned} \text { Distance between } 2 \text { to } 4 \text { station } & =\sqrt{(744523.2121-744517.3945)^{2}+(2031527.8810-2031566.7380)^{2}} \\ & =39.29 \text { Metres } \end{aligned} \]
Distance Between Stations
\[ \begin{aligned} \text { Distance between } 1 \text { to } 4 \text { station } & =\sqrt{(744517.3945-744492.8768)^{2}+(2031566.7380-2031516.2320)^{2}} \\ & =56.14 \text { Meters } \end{aligned} \]
\[ \begin{aligned} \text { Distance between } 1 \text { to } 5 \text { station } & =\sqrt{(744484.8212-744492.8768)^{2}+(2031556.6270-2031516.2320)^{2}} \\ & =41.19 \text { Metres } \end{aligned} \]
\[ \begin{aligned} \text { Distance between } 2 \text { to } 4 \text { station } & =\sqrt{(744523.2121-744517.3945)^{2}+(2031527.8810-2031566.7380)^{2}} \\ & =39.29 \text { Metres } \end{aligned} \]

Now, using the NOS problem we can calculate the area of the field as follows

First of all, Calculate offset cutting point distance to stations 2 and 5 from 1.

Land Area Calculation UTM Coordinates and NOS

OFFSET DISTANCE

Equations
\[ \begin{aligned} 1-A=\frac{1-4^{2}+1-5^{2}-5-4^{2}}{2 \times 14} & =\frac{56.14^{2}+41.19^{2}-34.10^{2}}{2 \times 56.14} \\ & =32.83 \text{ Meters} \end{aligned} \]
\[ \begin{aligned} 1 -B =\frac{1-4^{2}+1-2^{2}-2-4^{2}}{2 \times 14} & =\frac{56.14^{2}+32.49^{2}-39.29^{2}}{2 \times 56.14} \\ & =23.73 \text{ Meters} \end{aligned} \]
Equations
\[ \begin{aligned} 5-A & =\sqrt{(41.19)^{2}-(32.83)^{2}} \\ & =24.87 \text{ Metres} \end{aligned} \]
\[ \begin{aligned} 2-B & =\sqrt{(32.49)^{2}-(23.73)^{2}} \\ & =22.19 \text{ Metres} \end{aligned} \]

From Trapezium 1-2-4-5,

Equation
\[ \begin{aligned} \text{Area} & =\frac{1}{2} *(1-4) *[(5-A)+(2-B)] \\ & =\frac{1}{2} * 56.14 *[24.87+22.19] \\ & =1320.97 \text{ Sq.metres} \end{aligned} \]

From Triangle 1-5-6

OFFSET CUTTING POINT DISTANCE

Equation
\[ \begin{aligned} 1-C & =\frac{(1-5)^{2}+(1-6)^{2}-(5-6)^{2}}{2 *(1-5)} \\ & =\frac{41.19^{2}+29.80^{2}-11.68^{2}}{2 * 41.19}=29.71 \text{ Metres} \end{aligned} \]

OFFSET DISTANCE

Equation
\[ \begin{aligned} 6-C & =\sqrt{29.80^{2}-29.71^{2}} \\ & =2.31 \text{ Metres} \\ \text{Area} & =\frac{1}{2} * 41.19 * 2.31 \\ & =47.57 \text{ Sq.metres} \end{aligned} \]

From triangle 2-3-4,

OFFSET CUTTING POINT DISTANCE

Equation
\[ \begin{aligned} 2-D & =\frac{(2-4)^{2}+(2-3)^{2}-(3-4)^{2}}{2 *(2-4)} \\ & =\frac{39.29^{2}+22.39^{2}-17.06^{2}}{2 * 39.29} \\ & =22.32 \text{ Metres} \end{aligned} \]

OFFSET DISTANCE

Equation
$$ \begin{aligned} 3-D & =\sqrt{22.39^{2}-22.32^{2}} \\ & =1.76 \text{ Metres} \\ \text{Area} & =\frac{1}{2} * 39.29 * 1.76 \\ & =34.57 \text{ Sq.metres} \end{aligned} $$

Therefore,

Total area of field \( = 1320.97 + 47.57 – 34.57 = 1333.97 \) Sq. metres (0.329 Acres)

Leave a Reply

Your email address will not be published. Required fields are marked *